Journal Article

Aberrant Expression of the <i>Arabidopsis</i> Circadian-Regulated <i>APRR5</i> Gene Belonging to the APRR1/TOC1 Quintet Results in Early Flowering and Hypersensitiveness to Light in Early Photomorphogenesis

Eriko Sato, Norihito Nakamichi, Takafumi Yamashino and Takeshi Mizuno

in Plant and Cell Physiology

Published on behalf of Japanese Society of Plant Physiologists

Volume 43, issue 11, pages 1374-1385
Published in print November 2002 | ISSN: 0032-0781
Published online November 2002 | e-ISSN: 1471-9053 | DOI: http://dx.doi.org/10.1093/pcp/pcf166
Aberrant Expression of the Arabidopsis Circadian-Regulated APRR5 Gene Belonging to the APRR1/TOC1 Quintet Results in Early Flowering and Hypersensitiveness to Light in Early Photomorphogenesis

More Like This

Show all results sharing these subjects:

  • Biochemistry
  • Molecular and Cell Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

In Arabidopsis thaliana, the transcripts of the APRR1/TOC1 family genes each start accumulating after dawn rhythmically and one after another at intervals in the order of APRR9APRR7APRR5APRR3APRR1/TOC1 under continuous light. Except for the well-characterized APRR1/TOC1, however, no evidence has been provided that other APRR1/TOC1 family genes are indeed implicated in the mechanisms underlying circadian rhythms. We here attempted to provide such evidence by characterizing transgenic plants that constitutively express the APRR5 gene. The resulting APRR5-overexpressing (APRR5-ox) plants showed intriguing properties with regard to not only circadian rhythms, but also control of flowering time and light response. First, the aberrant expression of APRR5 in such transgenic plants resulted in a characteristic phenotype with regard to transcriptional events, in which free-running rhythms were considerably altered for certain circadian-regulated genes, including CCA1, LHY, APRR1/TOC1, other APRR1/TOC1 members, GI and CAB2, although each rhythm was clearly sustained even after plants were transferred to continuous light. With regard to biological events, APRR5-ox plants flowered much earlier than wild-type plants, more or less, in a manner independent of photoperiodicity (or under short-day conditions). Furthermore, APRR5-ox plants showed an SRL (short-hypocotyls under red light) phenotype that is indicative of hypersensitiveness to red light in early photomorphogenesis. Both APRR1-ox and APRR9-ox plants also showed the same phenotype. Therefore, APRR5 (together with APRR1/TOC1 and APRR9) must be taken into consideration for a better understanding of the molecular links between circadian rhythms, control of flowering time through the photoperiodic long-day pathway, and also light signaling-controlled plant development.

Keywords: Keywords: Arabidopsis — Circadian rhythm — Flowering time — Light signaling.

Journal Article.  8139 words.  Illustrated.

Subjects: Biochemistry ; Molecular and Cell Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.