Journal Article

The Effects of the Phospholipase D-Antagonist 1-Butanol on Seedling Development and Microtubule Organisation in <i>Arabidopsis</i>

John Gardiner, David A. Collings, John D. I. Harper and Jan Marc

in Plant and Cell Physiology

Published on behalf of Japanese Society of Plant Physiologists

Volume 44, issue 7, pages 687-696
Published in print July 2003 | ISSN: 0032-0781
Published online July 2003 | e-ISSN: 1471-9053 | DOI: http://dx.doi.org/10.1093/pcp/pcg095
The Effects of the Phospholipase D-Antagonist 1-Butanol on Seedling Development and Microtubule Organisation in Arabidopsis

More Like This

Show all results sharing these subjects:

  • Biochemistry
  • Molecular and Cell Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

The organisation of plant microtubules into distinct arrays during the cell cycle requires interactions with partner proteins. Having recently identified a 90-kDa phospholipase D (PLD) that associates with microtubules and the plasma membrane [Gardiner et al. (2001) Plant Cell 13: 2143], we exposed seeds and young seedlings of Arabidopsis to 1-butanol, a specific inhibitor of PLD-dependent production of the signalling molecule phosphatidic acid (PA). When added to agar growth media, 0.2% 1-butanol strongly inhibited the emergence of the radicle and cotyledons, while 0.4% 1-butanol effectively blocked germination. When normal seedlings were transferred onto media containing 0.2% and 0.4% 1-butanol, the inhibitor retarded root growth by about 40% and 90%, respectively, by reducing cell elongation. Inhibited plants showed significant swelling in the root elongation zone, bulbous or branched root hairs, and modified cotyledon morphology. Confocal immunofluorescence microscopy of root tips revealed that 1-butanol disrupted the organisation of interphase cortical microtubules. Butanol isomers that do not inhibit PLD-dependent PA production, 2- and 3-butanol, had no effect on seed germination, seedling growth, or microtubule organisation. We propose that production of PA by PLD may be required for normal microtubule organisation and hence normal growth in Arabidopsis.

Keywords: Keywords: Arabidopsis — Development — Growth — Microtubule — Phospholipase D — Root.; Abbreviations: BSA, bovine serum albumin; FITC, fluorescein isothiocyanate; MAP, microtubule-associated protein; PA, phosphatidic acid; PLD, phospholipase D.

Journal Article.  6767 words.  Illustrated.

Subjects: Biochemistry ; Molecular and Cell Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.