Journal Article

The Female-Specific <i>Cs-ACS1G</i> Gene of Cucumber. A Case of Gene Duplication and Recombination between the Non-Sex-Specific 1-Aminocyclopropane-1-Carboxylate Synthase Gene and a Branched-Chain Amino Acid Transaminase Gene

Ronit Rimon Knopf and Tova Trebitsh

in Plant and Cell Physiology

Published on behalf of Japanese Society of Plant Physiologists

Volume 47, issue 9, pages 1217-1228
Published in print September 2006 | ISSN: 0032-0781
Published online September 2006 | e-ISSN: 1471-9053 | DOI: http://dx.doi.org/10.1093/pcp/pcj092
The Female-Specific Cs-ACS1G Gene of Cucumber. A Case of Gene Duplication and Recombination between the Non-Sex-Specific 1-Aminocyclopropane-1-Carboxylate Synthase Gene and a Branched-Chain Amino Acid Transaminase Gene

More Like This

Show all results sharing these subjects:

  • Biochemistry
  • Molecular and Cell Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Cucumber (Cucumis sativus L.) is a monoecious plant in which female sex expression (gynoecy) is controlled by the Female (F) locus that can be modified by other sex-determining genes as well as by environmental and hormonal factors. As in many other cucurbits, ethylene is the major plant hormone regulating female sex expression. Previously we isolated the Cs-ACS1 (ACS, 1-aminocyclopropane-1-carboxylate synthase) gene that encodes the rate-limiting enzyme in the ethylene biosynthetic pathway. We proposed that Cs-ACS1 is present in a single copy in monoecious (ffMM) plants whereas gynoecious plants (FFMM) contain an additional copy Cs-ACS1G that was mapped to the F locus. To study the origin of Cs-ACS1G, we cloned and analyzed both the gynoecious-specific Cs-ACS1G gene and the non-sex-specific Cs-ACS1 gene. Our results indicate that Cs-ACS1G is the result of a relatively recent gene duplication and recombination, between Cs-ACS1 and a branched-chain amino acid transaminase (BCAT) gene. Taking into consideration that the Cs-ACS1G gene was mapped to the F locus, we propose that this duplication event gave rise to the F locus and to gynoecious cucumber plants. Computer analysis of the 1 kb region upstream of the transcription initiation site revealed several putative cis-acting regulatory elements that can potentially confer the responsiveness of Cs-ACS1G to developmental and hormonal factors and thereby control female sex determination in cucumber. These findings lead us to a model explaining the action of Cs-ACS1 and Cs-ACS1G in cucumber floral sex determination.

Keywords: 1-Aminocyclopropane-1-carboxylate synthase; Branched-chain amino acid transaminase; Cucumis sativus; Ethylene; Gynoecy; Sex determination

Journal Article.  7491 words.  Illustrated.

Subjects: Biochemistry ; Molecular and Cell Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.