Journal Article

Alterations of Lysine Modifications on the Histone H3 N-Tail under Drought Stress Conditions in <i>Arabidopsis thaliana</i>

Jong-Myong Kim, Taiko Kim To, Junko Ishida, Taeko Morosawa, Makiko Kawashima, Akihiro Matsui, Tetsuro Toyoda, Hiroshi Kimura, Kazuo Shinozaki and Motoaki Seki

in Plant and Cell Physiology

Published on behalf of Japanese Society of Plant Physiologists

Volume 49, issue 10, pages 1580-1588
Published in print October 2008 | ISSN: 0032-0781
Published online September 2008 | e-ISSN: 1471-9053 | DOI: http://dx.doi.org/10.1093/pcp/pcn133
Alterations of Lysine Modifications on the Histone H3 N-Tail under Drought Stress Conditions in Arabidopsis thaliana

More Like This

Show all results sharing these subjects:

  • Biochemistry
  • Molecular and Cell Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Post-translational modification of histone N-tails affects eukaryotic gene activity. In Arabidopsis, the histone modification level correlates with gene activation and repression in vernalization and flowering processes, but there is little information on changes in histone modification status and nucleosome structure under abiotic stresses. We determined the temporal and spatial changes in nucleosome occupancy and levels of H3K4me3, H3K9ac, H3K14ac, H3K23ac and H3K27ac in the histone H3 N-tail on the regions of four Arabidopsis drought stress-inducible genes, RD29A, RD29B, RD20 and RAP2.4, under drought stress conditions by chromatin immunoprecipitation analysis. We found two types of regulatory mechanisms of nucleosome occupancy function in the drought stress response. For RD29A and RD29B genes, nucleosome occupancy of promoter regions is low compared with that of coding regions, and no notable nucleosome loss occurs under drought stress. In contrast, nucleosome density is gradually decreased in response to drought stress on RD20 and RAP2.4 genes. Enrichments of H3K4me3 and H3K9ac correlate with gene activation in response to drought stress in all four genes. Interestingly, establishment of H3K4me3 occurs after accumulation of RNAPII on the coding regions of RD29A and RAP2.4. Enrichment of H3K23ac and H3K27ac occurs in response to drought stress on the coding regions of RD29B, RD20 and RAP2.4, but not on the coding region of RD29A. Our results indicate that histone modifications on the H3 N-tail are altered with gene activation on the coding regions of drought stress-responsive genes under drought stress conditions and that several patterns of nucleosome changes function in the drought stress response.

Keywords: Chromatin; Drought; Histone modification; Transcriptional regulation

Journal Article.  5526 words.  Illustrated.

Subjects: Biochemistry ; Molecular and Cell Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.