Journal Article

The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in <i>Arabidopsis thaliana</i>

Yusuke Niwa, Takafumi Yamashino and Takeshi Mizuno

in Plant and Cell Physiology

Published on behalf of Japanese Society of Plant Physiologists

Volume 50, issue 4, pages 838-854
Published in print April 2009 | ISSN: 0032-0781
Published online February 2009 | e-ISSN: 1471-9053 | DOI: http://dx.doi.org/10.1093/pcp/pcp028
The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana

More Like This

Show all results sharing these subjects:

  • Biochemistry
  • Molecular and Cell Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

The plant circadian clock generates rhythms with a period close to 24 h, and it controls a wide range of physiological and developmental oscillations in habitats under natural light/dark cycles. Among clock-controlled developmental events, the best characterized is the photoperiodic control of flowering time in Arabidopsis thaliana. Recently, it was also reported that the clock regulates a daily and rhythmic elongation of hypocotyls. Here, we report that the promotion of hypocotyl elongation is in fact dependent on changes in photoperiods in such a way that an accelerated hypocotyl elongation occurs especially under short-day conditions. In this regard, we provide genetic evidence to show that the circadian clock regulates the photoperiodic (or seasonal) elongation of hypocotyls by modulating the expression profiles of the PIF4 and PIF5 genes encoding phytochrome-interacting bHLH (basic helix–loop–helix) factors, in such a manner that certain short-day conditions are necessary to enhance the expression of these genes during the night-time. In other words, long-day conditions are insufficient to open the clock-gate for triggering the expression of PIF4 and PIF5 during the night-time. Based on these and other results, the photoperiodic control of hypocotyl elongation is best explained by the accumulation of PIF4 and PIF5 during the night-time of short days, due to coincidence between the internal (circadian rhythm) and external (photoperiod) time cues. This mechanism is a mirror image of the photoperiod-dependent promotion of flowering in that plants should experience long-day conditions to initiate flowering promptly. Both of these clock-mediated coincidence mechanisms may coordinately confer ecological fitness to plants growing in natural habitats with varied photoperiods.

Keywords: Hypocotyl elongation; Photoperiod; Plant circadian clock

Journal Article.  8744 words.  Illustrated.

Subjects: Biochemistry ; Molecular and Cell Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.