Journal Article

Omics-Based Approaches to Methionine Side Chain Elongation in Arabidopsis: Characterization of the Genes Encoding Methylthioalkylmalate Isomerase and Methylthioalkylmalate Dehydrogenase

Yuji Sawada, Ayuko Kuwahara, Mutsumi Nagano, Tomoko Narisawa, Akane Sakata, Kazuki Saito and Masami Yokota Hirai

in Plant and Cell Physiology

Published on behalf of Japanese Society of Plant Physiologists

Volume 50, issue 7, pages 1181-1190
Published in print July 2009 | ISSN: 0032-0781
Published online June 2009 | e-ISSN: 1471-9053 | DOI: http://dx.doi.org/10.1093/pcp/pcp079
Omics-Based Approaches to Methionine Side Chain Elongation in Arabidopsis: Characterization of the Genes Encoding Methylthioalkylmalate Isomerase and Methylthioalkylmalate Dehydrogenase

More Like This

Show all results sharing these subjects:

  • Biochemistry
  • Molecular and Cell Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Glucosinolates (GSLs) are secondary metabolites in Brassicaceae plants synthesized from amino acids. Methionine-derived GSLs (Met-GSLs) with diverse side chains of various lengths are the major GSLs in Arabidopsis. Methionine chain elongation enzymes are responsible for variations in chain length in Met-GSL biosynthesis. The genes encoding methionine chain elongation enzymes are considered to have been recruited from the leucine biosynthetic pathway in the course of evolution. Among them, the genes encoding methylthioalkylmalate synthases and aminotransferases have been identified; however, the remaining genes that encode methylthioalkylmalate isomerase (MAM-I) and methylthioalkylmalate dehydro-genase (MAM-D) remain to be identified. In a previous study based on transcriptome co-expression analysis, we identified candidate genes for the large subunit of MAM-I and MAM-D. In this study, we confirmed their predicted functions by targeted GSL analysis of the knockout mutants, and named the respective genes MAM-IL1/AtleuC1 and MAM-D1/AtIMD1. Metabolic profiling of the knockout mutants of methionine chain elongation enzymes, conducted by means of widely targeted metabolomics, implied that these enzymes have roles in controlling metabolism from methionine to primary and methionine-related secondary metabolites. As shown here, an omics-based approach is an efficient strategy for the functional elucidation of genes involved in metabolism.

Keywords: Chain elongation; Gene function; Glucosinolate; High throughput; Methionine; Widely targeted metabolomics

Journal Article.  5702 words.  Illustrated.

Subjects: Biochemistry ; Molecular and Cell Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.