Journal Article

Differential Gene Expression Profiles of the Mitochondrial Respiratory Components in Illuminated Arabidopsis Leaves

Keisuke Yoshida and Ko Noguchi

in Plant and Cell Physiology

Published on behalf of Japanese Society of Plant Physiologists

Volume 50, issue 8, pages 1449-1462
Published in print August 2009 | ISSN: 0032-0781
Published online June 2009 | e-ISSN: 1471-9053 | DOI: http://dx.doi.org/10.1093/pcp/pcp090
Differential Gene Expression Profiles of the Mitochondrial Respiratory Components in Illuminated Arabidopsis Leaves

More Like This

Show all results sharing these subjects:

  • Biochemistry
  • Molecular and Cell Biology
  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Plant mitochondria have multiple energy-dissipating components in the respiratory chain. It is known that these components are induced under several stress conditions. Here we examined whether the gene expression pattern and its regulatory mechanism under high light (HL) conditions are different among the respiratory components in Arabidopsis leaves. Alternative oxidase (AOX) gene expression (AOX1a and AOX1c) and amount of protein were elevated after exposure to HL. In addition to AOX, the expression of other respiratory genes, including NDA1, NDB2, NDC1, UCP1, UCP5, COX6b and CI76, was also induced by HL. NDB2 was co-expressed with AOX1a, but other HL-induced genes showed a distinct expression pattern. Manipulation of photosynthesis or respiration using several chemicals revealed that while the expression of AOX1a and NDB2 was mainly induced by inhibition of the respiratory chain, NDA1 expression was affected by photosynthesis-related reactive oxygen species. The expression of AOX1c, NDC1, COX6b and CI76 was not induced by these manipulations. When plants were exposed to HL under a high CO2 environment, the expression of several respiratory genes was more strongly induced, suggesting that modulations of cellular carbon status by elevated photosynthesis are involved in respiratory gene expression. Based on these results, we propose a mechanistic model of respiratory gene expression in illuminated leaves.

Keywords: Alternative oxidase; Arabidopsis thaliana; Energy-dissipating respiratory components; Gene expression; High light stress

Journal Article.  7860 words.  Illustrated.

Subjects: Biochemistry ; Molecular and Cell Biology ; Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.