Journal Article

Chemical Visualization of an Attractant Peptide, LURE

Hiroaki Goto, Satohiro Okuda, Akane Mizukami, Hitoshi Mori, Narie Sasaki, Daisuke Kurihara and Tetsuya Higashiyama

in Plant and Cell Physiology

Published on behalf of Japanese Society of Plant Physiologists

Volume 52, issue 1, pages 49-58
Published in print January 2011 | ISSN: 0032-0781
Published online December 2010 | e-ISSN: 1471-9053 | DOI:

More Like This

Show all results sharing these subjects:

  • Biochemistry
  • Molecular and Cell Biology
  • Plant Sciences and Forestry


Show Summary Details


The pollen tube attractant peptide LUREs of Torenia fournieri are diffusible peptides that attract pollen tubes in vitro. Here, we report a method enabling the direct visualization of a LURE peptide without inhibiting its attraction activity by conjugating it with the Alexa Fluor 488 fluorescent dye. After purifying and refolding the recombinant LURE2 with a polyhistidine tag, its amino groups were targeted for conjugation with the Alexa Fluor dye. Labeling of LURE2 was confirmed by its fluorescence and mass spectrometry. In our in vitro assay using gelatin beads, Alexa Fluor 488-labeled LURE2 appeared to have the same activity as unlabeled LURE2. Using the labeled LURE2, the relationship between the spatiotemporal change of distribution and activity of LURE2 was examined. LURE2 attracted pollen tubes when embedded in gelatin beads, but hardly at all when in agarose beads. Direct visualization suggested that the significant difference between these conditions was the retention of LURE2 in the gelatin bead, which might delay diffusion of LURE2 from the bead. Direct visualization of LURE peptide may open the way to studying the spatiotemporal dynamics of LURE in pollen tube attraction.

Keywords: Alexa Fluor labeling; Attractants; Peptides; Pollen-tube guidance

Journal Article.  5721 words.  Illustrated.

Subjects: Biochemistry ; Molecular and Cell Biology ; Plant Sciences and Forestry

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.