Journal Article

Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems

Motoshi Kunugi, Soichirou Satoh, Kunio Ihara, Kensuke Shibata, Yukimasa Yamagishi, Kazuhiro Kogame, Junichi Obokata, Atsushi Takabayashi and Ayumi Tanaka

in Plant and Cell Physiology

Volume 57, issue 6, pages 1231-1243
Published in print June 2016 | ISSN: 0032-0781
Published online April 2016 | e-ISSN: 1471-9053 | DOI: http://dx.doi.org/10.1093/pcp/pcw071
Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems

More Like This

Show all results sharing these subjects:

  • Molecular Biology and Genetics
  • Biotechnology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Molecular and Cell Biology
  • Plant Sciences and Forestry
  • Plant Physiology

GO

Show Summary Details

Preview

Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.

Keywords: Evolution; Green algae; Land plants; Light adaptation; Photosystem

Journal Article.  8397 words.  Illustrated.

Subjects: Molecular Biology and Genetics ; Biotechnology ; Biochemistry ; Bioinformatics and Computational Biology ; Molecular and Cell Biology ; Plant Sciences and Forestry ; Plant Physiology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.