Journal Article

Nature of the Source Regions for Post-collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling

H. M. WILLIAMS, S. P. TURNER, J. A. PEARCE, S. P. KELLEY and N. B. W. HARRIS

in Journal of Petrology

Volume 45, issue 3, pages 555-607
Published in print March 2004 | ISSN: 0022-3530
Published online March 2004 | e-ISSN: 1460-2415 | DOI: http://dx.doi.org/10.1093/petrology/egg094
Nature of the Source Regions for Post-collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling

Show Summary Details

Preview

Neogene potassic lavas in northern and southern Tibet have different isotopic (εNd(i) north, −5·5 to −10·3; south −8·8 to −18·1) and major element signatures suggesting derivation from separate sub-continental lithospheric mantle (SCLM) sources. Inverse trace-element modelling shows that the southern Tibet magmas were derived by 1–2% partial melting of a phlogopite and amphibole peridotite, and that the northern samples were derived by 3–4% partial melting of a phlogopite peridotite. In both cases, melting is inferred to take place in the spinel stability field. Both sources show large ion lithophile element (LILE) enrichment relative to the high field strength elements (HFSE), and heavy rare earth element (HREE) depletion relative to primitive mantle. LILE/HFSE enrichment suggests subduction-related metasomatism; HREE depletion is indicative of prior melt extraction. Extension postdates the earliest magmatism in southern and north–central Tibet by 7 Myr and 5 Myr, respectively, which, in combination with the shallow depths of melting inferred for the Tibetan samples, supports geodynamic models invoking thinning of the SCLM. The northern Tibetan magmatism and extension can be explained by convective removal of the lower SCLM; the older ages and arcuate distribution of the southern magmas are most consistent with the SCLM erosion following slab break-off.

Keywords: Tibet; lithospheric mantle; magmatism; extension

Journal Article.  28739 words.  Illustrated.

Subjects: Petrology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.