Journal Article

Origin of Basalts by Hybridization in Andesite-dominated Arcs

Michael Cassidy, Marie Edmonds, Sebastian F. L. Watt, Martin R. Palmer and Thomas M. Gernon

in Journal of Petrology

Volume 56, issue 2, pages 325-346
Published in print February 2015 | ISSN: 0022-3530
Published online February 2015 | e-ISSN: 1460-2415 | DOI: http://dx.doi.org/10.1093/petrology/egv002
Origin of Basalts by Hybridization in Andesite-dominated Arcs

Show Summary Details

Preview

Mafic magmas are common in subduction zone settings, yet their high density restricts their ascent to the surface. Once stalled in the crust, these magmas may differentiate, and assimilate crust and other melts and crystal mushes to produce hybridized intermediate magmas. The Soufrière Hills Volcano on Montserrat is a ‘type locality’ for such hybridization processes and yet, just 3 km south of the crater, voluminous basalts have erupted from the South Soufrière Hills volcano within the same time period as the Soufrière Hills Volcano was erupting hybrid andesites (131–128 ka). Basaltic South Soufrière Hills magmas have 48–53 wt % SiO2 and 4–6 wt % MgO. They were hot (970–1160°C), volatile-rich (melt inclusions contain up to 6·2 wt % H2O) and were stored at 8–13 km depth prior to eruption (based on olivine- and pyroxene-hosted melt inclusion volatile geochemistry). Melt inclusions do not preserve basaltic liquids: they are andesitic to rhyolitic in composition, related to one another by a line of descent controlled by simple closed-system fractionation. Whole-rock compositions, however, are best described by a hybridization model involving ‘back-mixing’ of andesitic to rhyolitic melts with mafic crystal phases such as magnetite, olivine, orthopyroxene and clinopyroxene. Phenocryst zoning illustrates repeated mixing events between evolved melts and mafic phenocrysts; this feature, when coupled with the heterogeneity of crystal compositions, strongly suggests that although the bulk compositions are basaltic (containing Fo80 olivine), they were assembled from disparate ingredients, probably derived from mafic crystal mushes and more evolved melt lenses of variable composition. The mixing events occur days to weeks prior to eruption. We propose that the South Soufrière Hills basaltic magmas, with their higher bulk density relative to andesites from neighbouring volcanoes, ultimately may have been eruptible owing to both the transtensional tectonics imposed by offshore grabens (related to oblique subduction in the Lesser Antilles arc) and surface unloading caused by large-scale edifice collapse. Our observations support the idea that compositional changes in arcs might reflect not only changes in source compositions, but also effects caused by variations in crustal strain and tectonics.

Keywords: crystal zoning; magma mixing; melt inclusions; tectonics; mineral chemistry, olivine, magma chamber

Journal Article.  11827 words.  Illustrated.

Subjects: Petrology

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.