Journal Article

Subchronic 13-Week Inhalation Exposure of Rats to Multiwalled Carbon Nanotubes: Toxic Effects Are Determined by Density of Agglomerate Structures, Not Fibrillar Structures

Jürgen Pauluhn

in Toxicological Sciences

Volume 113, issue 1, pages 226-242
Published in print January 2010 | ISSN: 1096-6080
Published online October 2009 | e-ISSN: 1096-0929 | DOI: http://dx.doi.org/10.1093/toxsci/kfp247
Subchronic 13-Week Inhalation Exposure of Rats to Multiwalled Carbon Nanotubes: Toxic Effects Are Determined by Density of Agglomerate Structures, Not Fibrillar Structures

More Like This

Show all results sharing these subjects:

  • Medical Toxicology
  • Toxicology (Non-medical)

GO

Show Summary Details

Preview

Wistar rats were nose-only exposed to multiwalled carbon nanotubes (MWCNT, Baytubes) in a subchronic 13-week inhalation study. The focus of study was on respiratory tract and systemic toxicity, including analysis of MWCNT biokinetics in the lungs and lung-associated lymph nodes (LALNs). The time course and concentration dependence of pulmonary effects were examined by bronchoalveolar lavage (BAL) and histopathology up to 6 months postexposure. Particular emphasis was directed to the comparative characterization of MWCNT structures prior to and after micronization and dry powder dispersion into inhalation chambers. These determinations were complemented by additional analyses in digested BAL cells. Animals were exposed on 6 h/day, 5 days per week for 13 consecutive weeks to 0, 0.1, 0.4, 1.5, and 6 mg/m3. The subchronic exposure to respirable solid aerosols of MWCNT was tolerated without effects suggestive of systemic toxicity. Kinetic analyses demonstrated a markedly delayed clearance of MWCNT from lungs at overload conditions. Translocation into LALNs occurred at 1.5 and 6 mg/m3 and required at least 13 weeks of study to become detectable. At these exposure levels, the lung and LALN weights were significantly increased. Sustained elevations in BAL polymorphonuclear neutrophils and soluble collagen occurred at these concentrations with borderline effects at 0.4 mg/m3. Histopathology revealed principal exposure-related lesions at 0.4 mg/m3 and above in the upper respiratory tract (goblet cell hyper- and/or metaplasia, eosinophilic globules, and focal turbinate remodeling) and the lower respiratory tract (inflammatory changes in the bronchioloalveolar region and increased interstitial collagen staining). Granulomatous changes and a time-dependent increase of a bronchioloalveolar hyperplasia occurred at 6 mg/m3. All end points examined were unremarkable at 0.1 mg/m3 (no-observed-adverse-effect-level). In summary, this study demonstrates that the induced pathological changes are consistent with overload-related phenomena. Hence, the etiopathological sequence of inflammatory events caused by this type of MWCNT appears to be related to the high displacement volume of the low-density MWCNT assemblage structure rather than to any yet ill-defined intrinsic toxic property. Thus, the hypothesis of study is verified, namely, common denominators between carbon black and MWCNT do exist.

Keywords: nanoparticles; multiwalled carbon nanotubes; repeated inhalation exposure; disposition; respirability; clearance; aggregates; pulmonary and extrapulmonary toxicity; volume displacement overload

Journal Article.  9651 words.  Illustrated.

Subjects: Medical Toxicology ; Toxicology (Non-medical)

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.