Journal Article

Effects of Cytochrome P450 Inhibitors on the Biotransformation of Fluorogenic Substrates by Adult Male Rat Liver Microsomes and cDNA-Expressed Rat Cytochrome P450 Isoforms

Emilija Makaji, Cristina S. Trambitas, Pamela Shen, Alison C. Holloway and Denis J. Crankshaw

in Toxicological Sciences

Volume 113, issue 2, pages 293-304
Published in print February 2010 | ISSN: 1096-6080
Published online October 2009 | e-ISSN: 1096-0929 | DOI: http://dx.doi.org/10.1093/toxsci/kfp255
Effects of Cytochrome P450 Inhibitors on the Biotransformation of Fluorogenic Substrates by Adult Male Rat Liver Microsomes and cDNA-Expressed Rat Cytochrome P450 Isoforms

More Like This

Show all results sharing these subjects:

  • Medical Toxicology
  • Toxicology (Non-medical)

GO

Show Summary Details

Preview

We have evaluated the use of a panel of six fluorogenic cytochrome P450 (CYP) substrates as a potential tool for rapid screening for global changes in CYP activity in rats under different physiological conditions. The biotransformation of 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin (AMMC), 7-benzyloxy-4-(trifluoromethyl)-coumarin, 7-benzyloxyquinoline, 3-cyano-7-ethoxycoumarin, 7-methoxy-4-(trifluoromethyl)-coumarin, and 7-ethoxy-4-trifluoromethyl-coumarin by microsomes from adult male rat liver were characterized, their sensitivities to 15 putative inhibitors were determined and compared to similar experiments using nine different complementary DNA (cDNA)–expressed rat CYPs. Inhibitory profiles of the substrates in microsomes were different from each other, with some overlap, suggesting that each substrate is to some extent biotransformed by a different CYP isoform. Ketoconazole and clotrimazole were nonselective inhibitors, while ticlopidine selectively inhibited biotransformation of AMMC. CYP2A1 did not biotransform any of the substrates, and CYP2E1 was insensitive to all the inhibitors tested. Some inhibitors did not affect the biotransformation of the fluorogenic substrates by cDNA-expressed isoforms as predicted by their effects on conventional substrates, e.g., chlorzoxazone and diethyldithiocarbamate were inactive against CYP2E1, and CYP2C6 was not inhibited by sulfaphenazole. When results in microsomes and cDNA-expressed CYPs were compared, only the majority of the biotransformation of AMMC by microsomes could be assigned with full confidence to a specific CYP isoform, namely CYP2D2. Nevertheless, different inhibitory profiles of the substrates indicate that the panel will be useful for rapid functional quantification of global CYP activity in rats under different experimental conditions. Our results also demonstrate the inappropriateness of extrapolating inhibitory data between conventional and fluorogenic CYP substrates.

Keywords: cytochrome P450; rat; liver; cDNA expressed; fluorogenic substrate; inhibitor

Journal Article.  5557 words.  Illustrated.

Subjects: Medical Toxicology ; Toxicology (Non-medical)

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.