Journal Article

Dysregulation of BDNF-TrkB Signaling in Developing Hippocampal Neurons by Pb<sup>2+</sup>: Implications for an Environmental Basis of Neurodevelopmental Disorders

Kirstie H. Stansfield, J. Richard Pilsner, Quan Lu, Robert O. Wright and Tomás R. Guilarte

in Toxicological Sciences

Volume 127, issue 1, pages 277-295
Published in print May 2012 | ISSN: 1096-6080
Published online February 2012 | e-ISSN: 1096-0929 | DOI: http://dx.doi.org/10.1093/toxsci/kfs090
Dysregulation of BDNF-TrkB Signaling in Developing Hippocampal Neurons by Pb2+: Implications for an Environmental Basis of Neurodevelopmental Disorders

More Like This

Show all results sharing these subjects:

  • Medical Toxicology
  • Toxicology (Non-medical)

GO

Show Summary Details

Preview

Dysregulation of synaptic development and function has been implicated in the pathophysiology of neurodegenerative disorders and mental disease. A neurotrophin that has an important function in neuronal and synaptic development is brain-derived neurotrophic factor (BDNF). In this communication, we examined the effects of lead (Pb2+) exposure on BDNF-tropomyosin-related kinase B (TrkB) signaling during the period of synaptogenesis in cultured neurons derived from embryonic rat hippocampi. We show that Pb2+ exposure decreases BDNF gene and protein expression, and it may also alter the transport of BDNF vesicles to sites of release by altering Huntingtin phosphorylation and protein levels. Combined, these effects of Pb2+ resulted in decreased concentrations of extracellular mature BDNF. The effect of Pb2+ on BDNF gene expression was associated with a specific decrease in calcium-sensitive exon IV transcript levels and reduced phosphorylation and protein expression of the transcriptional repressor methyl-CpG–binding protein (MeCP2). TrkB protein levels and autophosphorylation at tyrosine 816 were significantly decreased by Pb2+ exposure with a concomitant increase in p75 neurotrophin receptor (p75NTR) levels and altered TrkB-p75NTR colocalization. Finally, phosphorylation of Synapsin I, a presynaptic target of BDNF-TrkB signaling, was significantly decreased by Pb2+ exposure with no effect on total Synapsin I protein levels. This effect of Pb2+ exposure on Synapsin I phosphorylation may help explain the impairment in vesicular release documented by us previously (Neal, A. P., Stansfield, K. H., Worley, P. F., Thompson, R. E., and Guilarte, T. R. (2010). Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: Potential role of N-Methyl-D-aspartate receptor (NMDAR) dependent BDNF signaling. Toxicol. Sci. 116, 249–263) because it controls vesicle movement from the reserve pool to the readily releasable pool. In summary, the present study demonstrates that Pb2+ exposure during the period of synaptogenesis of hippocampal neurons in culture disrupts multiple synaptic processes regulated by BDNF-TrkB signaling with long-term consequences for synaptic function and neuronal development.

Keywords: BDNF; TrkB; p75NTR; MeCP2; epigenetics; Huntingtin; Synapsin I; phosphorylation; Pb2+; hippocampus; neuron; synaptogenesis

Journal Article.  9754 words.  Illustrated.

Subjects: Medical Toxicology ; Toxicology (Non-medical)

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.