Journal Article

Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC

Robert E. Keane, Kevin C. Ryan and Steven W. Running

in Tree Physiology

Volume 16, issue 3, pages 319-331
Published in print March 1996 | ISSN: 0829-318X
e-ISSN: 1758-4469 | DOI:
Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC

Show Summary Details


A mechanistic, biogeochemical succession model, FIRE-BGC, was used to investigate the role of fire on long-term landscape dynamics in northern Rocky Mountain coniferous forests of Glacier National Park, Montana, USA. FIRE-BGC is an individual-tree model—created by merging the gap-phase process-based model FIRESUM with the mechanistic ecosystem biogeochemical model FOREST-BGC—that has mixed spatial and temporal resolution in its simulation architecture. Ecological processes that act at a landscape level, such as fire and seed dispersal, are simulated annually from stand and topographic information. Stand-level processes, such as tree establishment, growth and mortality, organic matter accumulation and decomposition, and undergrowth plant dynamics are simulated both daily and annually. Tree growth is mechanistically modeled based on the ecosystem process approach of FOREST-BGC where carbon is fixed daily by forest canopy photosynthesis at the stand level. Carbon allocated to the tree stem at the end of the year generates the corresponding diameter and height growth. The model also explicitly simulates fire behavior and effects on landscape characteristics. We simulated the effects of fire on ecosystem characteristics of net primary productivity, evapotranspiration, standing crop biomass, nitrogen cycling and leaf area index over 200 years for the 50,000-ha McDonald Drainage in Glacier National Park. Results show increases in net primary productivity and available nitrogen when fires are included in the simulation. Standing crop biomass and evapotranspiration decrease under a fire regime. Shade-intolerant species dominate the landscape when fires are excluded. Model tree increment predictions compared well with field data.

Keywords: evapotranspiration; landscape dynamics; net primary productivity; standing crop biomass

Journal Article.  0 words. 

Subjects: Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.