Journal Article

Root cold tolerance of black spruce seedlings: viability tests in relation to survival and regrowth

F. J. Bigras

in Tree Physiology

Volume 17, issue 5, pages 311-318
Published in print May 1997 | ISSN: 0829-318X
Published online May 1997 | e-ISSN: 1758-4469 | DOI: http://dx.doi.org/10.1093/treephys/17.5.311
Root cold tolerance of black spruce seedlings: viability tests in relation to survival and regrowth

More Like This

Show all results sharing this subject:

  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

Root systems of 6-month-old, cold-hardened, container-grown black spruce seedlings (Picea mariana (Mill.) B.S.P.) were exposed to 0, –5, –10, –15, –20, or –22.5 °C. Freezing-induced damage to fine roots, coarse roots and the whole root system was assessed by various viability tests including leakage of electrolytes, leakage of phenolic compounds, water loss, root and shoot water potentials, and live root dry mass. To assess the long-term effects of freezing-induced root damage, seedling survival and regrowth were measured. Leakage of both electrolytes and phenolic compounds differed among fine roots, coarse roots, and whole root systems. In coarse roots and the whole root system, but not in fine roots, leakage of electrolytes, leakage of phenolic compounds, water loss, and root and shoot water potentials were correlated with percentage of live root dry mass which, in turn, was highly correlated with seedling survival and regrowth. Compared with live root dry mass, electrolyte and phenolic leakage, water loss, and root and shoot water potentials were less well correlated with seedling survival and regrowth. Among the viability tests, electrolyte leakage of the whole root system correlated most closely with seedling survival and regrowth. Under freezing conditions that destroyed less than 50+ of each seedling's root system, about 70+ of the seedlings survived and subsequent growth was little affected, whereas under freezing conditions that destroyed 70+ of each seedling's root system, only about 30+ of the seedlings survived and subsequent growth was reduced compared with that of undamaged plants.

Keywords: electrolyte leakage; phenolic leakage; Picea mariana; water loss; water potential

Journal Article.  0 words. 

Subjects: Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.