Journal Article

Loblolly pine and slash pine responses to acute aluminum and acid exposures

Jaroslaw Nowak and Alexander L. Friend

in Tree Physiology

Volume 26, issue 9, pages 1207-1215
Published in print September 2006 | ISSN: 0829-318X
Published online September 2006 | e-ISSN: 1758-4469 | DOI: http://dx.doi.org/10.1093/treephys/26.9.1207
Loblolly pine and slash pine responses to acute aluminum and acid exposures

Show Summary Details

Preview

In response to concerns about aluminum and HCl exposure associated with rocket motor testing and launches, survival and growth of full-sib families of loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) were evaluated in a nursery bed experiment. Each species was exposed to a single soil application of aluminum chloride (0.33 M AlCl3, pH 2.5), hydrochloric acid (0.39 M HCl, pH 0.6) or water, with or without mycorrhizal inoculation with Pisolithus tinctorius (Coker and Couch). After 20 weeks without inoculation, survival in AlCl3 and HCl treatments averaged 52% for loblolly pine and 72% for slash pine. Inoculation improved survival of loblolly pine, receiving HCl from 49 to 73%, and of those receiving AlCl3, from 55 to 90%. Inoculation also resulted in improved survival and growth of individual families in AlCl3, but not in HCl treatments. Results illustrate the relative resistance of both pine species to the acute treatments supplied, the improvement in resistance associated with mycorrhizal inoculation and the importance of field testing, following hydroponic screening, to verify the resistance to soil-supplied stresses.

Keywords: acute acidity exposure; aluminum resistance; aluminum tolerance; aluminum toxicity; genetic variation; mycorrhizae; Pinus elliottii; Pinus taeda; Pisolithus tinctorius; soil acidity; solid rocket motor testing

Journal Article.  0 words. 

Subjects: Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.