Journal Article

Plasticity of shoot and needle morphology and photosynthesis of two <i>Picea</i> species with different site preferences in northern Japan

Hiroaki Ishii, Satoshi Kitaoka, Taiji Fujisaki, Yutaka Maruyama and Takayoshi Koike

in Tree Physiology

Volume 27, issue 11, pages 1595-1605
Published in print November 2007 | ISSN: 0829-318X
Published online November 2007 | e-ISSN: 1758-4469 | DOI: http://dx.doi.org/10.1093/treephys/27.11.1595
Plasticity of shoot and needle morphology and photosynthesis of two Picea species with different site preferences in northern Japan

More Like This

Show all results sharing this subject:

  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

We compared shoot and needle morphology and photosynthesis in Picea glehnii (Friedr. Schmidt) M.T. Mast. and Picea jezoensis (Sieb. et Zucc.) Carr. trees planted on immature volcanic ash and well-developed brown forest soils to investigate whether species differences in morphological and physiological plasticity affected tree growth on different soil types. Height growth of P. glehnii was reduced by about 10% on volcanic ash compared with forest soil, whereas that of P. jezoensis was reduced by more than 60%. Needle morphology of P. glehnii was unaffected by soil type. In contrast, needles of P. jezoensis trees growing on volcanic ash were shorter, narrower and thicker, with less dry mass and area, than those of trees growing on forest soil, and specific needle area was lower, indicating lower foliar light-interception efficiency. In both species, changes in needle morphology with increasing irradiance were similar in trees growing on both soil types, indicating that plasticity of needle morphology was unaffected by soil type. In both species, shoot mass and shoot silhouette area were lower and needle mass per unit shoot mass was higher in trees growing on volcanic ash than in trees growing on forest soil. Trees of both species had more needles per unit shoot length, lower shoot silhouette to projected needle area ratios and lower shoot silhouette areas per unit shoot mass (SAM) on volcanic ash than on forest soil, indicating lower shoot-level light-interception efficiency. For P. glehnii, the response of shoot morphology to increasing irradiance was similar on both soil types, with the exception of SAM, which showed lower plasticity in trees growing on volcanic ash. In contrast, shoot-level morphological plasticity of P. jezoensis was reduced in trees growing on volcanic ash. Light-saturated maximum photosynthetic rate (Pmax) of P. glehnii was unaffected by soil type, whereas mass-based Pmax of P. jezoensis was lower in trees growing on volcanic ash than in trees growing on forest soil. In P. jezoensis trees growing on forest soil, area-based Pmax increased with increasing irradiance, but this response was not observed in trees growing on volcanic ash. As a result, area-based Pmax at the top of the canopy was 39 to 54% lower in trees growing on volcanic ash than in trees growing on forest soil. Our results indicate that constraints on morphological acclimation to high irradiances may contribute to reduced height growth of P. jezoensis on volcanic ash.

Keywords: morphological plasticity; photosynthetic acclimation; Picea glehnii; Picea jezoensis; shoot architecture

Journal Article.  0 words. 

Subjects: Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.