Journal Article

Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation

Hyun-Seok Kim, Ram Oren and Thomas M. Hinckley

in Tree Physiology

Volume 28, issue 4, pages 559-577
Published in print April 2008 | ISSN: 0829-318X
Published online April 2008 | e-ISSN: 1758-4469 | DOI: http://dx.doi.org/10.1093/treephys/28.4.559
Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation

More Like This

Show all results sharing this subject:

  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

We examined the tradeoffs between stand-level water use and carbon uptake that result when biomass production of trees in plantations is maximized by removing nutrient and water limitations. A Populus trichocarpa Torr. × P. deltoides Bartr. & Marsh. plantation was irrigated and received frequent additions of nutrients to optimize biomass production. Sap flux density was measured continuously over four of the six growing-season months, supplemented with periodic measurements of leaf gas exchange and water potential. Measurements of tree diameter and height were used to estimate leaf area and biomass production based on allometric relationships. Sap flux was converted to canopy conductance and analyzed with an empirical model to isolate the effects of water limitation. Actual and soil-water-unlimited potential CO2 uptakes were estimated with a canopy conductance constrained carbon assimilation (4C-A) scheme, which couples actual or potential canopy conductance with vertical gradients of light distribution, leaf-level conductance, maximum Rubisco capacity and maximum electron transport. Net primary production (NPP) was about 43% of gross primary production (GPP); when estimated for individual trees, this ratio was independent of tree size. Based on the NPP/GPP ratio, we found that current irrigation reduced growth by about 18% compared with growth with no water limitation. To achieve maximum growth, however, would require 70% more water for transpiration, and would reduce water-use efficiency by 27%, from 1.57 to 1.15 g stem wood C kg−1 water. Given the economic and social values of water, plantation managers appear to have optimized water use.

Keywords: gas-exchange; gross primary production; leaf area index; leaf water potential; light-use efficiency; net primary production; soil water; water-use efficiency

Journal Article.  0 words. 

Subjects: Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.