Journal Article

Coordinating leaf functional traits with branch hydraulic conductivity: resource substitution and implications for carbon gain

Daniel Taylor and Derek Eamus

in Tree Physiology

Volume 28, issue 8, pages 1169-1177
Published in print August 2008 | ISSN: 0829-318X
Published online August 2008 | e-ISSN: 1758-4469 | DOI: http://dx.doi.org/10.1093/treephys/28.8.1169
Coordinating leaf functional traits with branch hydraulic conductivity: resource substitution and implications for carbon gain

More Like This

Show all results sharing this subject:

  • Plant Sciences and Forestry

GO

Show Summary Details

Preview

We studied relationships among branch hydraulic conductivity, xylem embolism, stomatal conductance (gs), foliar nitrogen (N) concentration and specific leaf area (SLA) of seven tree species growing at four temperate woodland sites spanning a 464–1350 mm rainfall gradient. Specifically, we examined the question: are gs and foliar N concentration coordinated with branch hydraulic conductivity and, if so, what are the implications for carbon assimilation? Area-based, light-saturated photosynthetic rate (Aa) was uniquely and positively correlated with gs and foliar N concentration. Multiple regression analyses showed that, when variability in SLA was controlled for, the (positive) partial slope for each predictor remained significant. In contrast, there was a negative correlation between gs and foliar N concentration such that, for any given Aa, leaves with a high gs allocated less N to foliage than leaves with a low gs. Foliar N concentration was negatively correlated with branch hydraulic conductivity, whereas gs was positively correlated with branch hydraulic conductivity. These relationships were also significant when variability in leaf area to sapwood area ratio, gs and SLA were controlled for in a multiple regression, suggesting that the relationships were unique and independent of other confounding factors. Trees with low water transport capacity were able to support a high Aa by increasing investment in foliar N. Resource substitution occurred such that there was a trade-off between gs and foliar N in relation to branch hydraulic conductivity. High Aa could be sustained through either a high branch hydraulic conductivity and hence high gs and a low allocation to foliar N, or the effect of a low branch hydraulic conductivity and hence low gs could be offset by a high allocation to foliar N. The results are discussed in relation to mechanisms for minimizing the negative effects of limited water availability on carbon gain.

Keywords: gas exchange; plant hydraulics

Journal Article.  0 words. 

Subjects: Plant Sciences and Forestry

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.