Journal Article

Probability density functions for radial anisotropy from fundamental mode surface wave data and the Neighbourhood Algorithm

Caroline Beghein and Jeannot Trampert

in Geophysical Journal International

Volume 157, issue 3, pages 1163-1174
Published in print June 2004 | ISSN: 0956-540X
Published online June 2004 | e-ISSN: 1365-246X | DOI:
Probability density functions for radial anisotropy from fundamental mode surface wave data and the Neighbourhood Algorithm

Show Summary Details



We applied Sambridge's Neighbourhood Algorithm (NA) to degree-8 fundamental mode Love and Rayleigh wave phase velocity maps between 40 and 150 s to find models of radial anisotropy in the upper 220 km of the mantle. The NA is a powerful tool to explore a multidimensional model space and retrieve an ensemble of models from which statistical inferences (posterior probability density functions (PPDFs) and trade-offs) can be made. We sought solutions for density anomalies and perturbations in the five elastic coefficients that describe transverse isotropy and obtained independent probability density functions for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. We find robust departures from PREM in S-wave anisotropy (ξ) under cratons and oceans alike, with a clear change of sign in the anomalies with respect to the reference model at approximately 100 km depth. No significant difference is observed between cratons and oceans, both in the amplitude and depth variation of ξ. The signal within continents is clearly age related, with platforms and tectonically active regions characterized by a rapid decrease in ξ with depth, while cratons display a more constant signal. A similar age dependence in S-wave anisotropy is also observed beneath oceans: a strong and rapidly decreasing anisotropy for young oceans and a more constant anisotropy for older oceans. Perturbations in P-wave anisotropy (φ) are small and limited to the shallowest part of the continents. A small age-dependent signal for φ is observed beneath oceans. Anomalies in intermediate parameter η are similar to those in φ (but not globally correlated), but the deviation from PREM is stronger for η than for φ. Cratons appear to be devoid of any η anisotropy in the top 100 km. There is no obvious global correlation between deviations in φ and deviations in ξ, and the ratio between dη and dξ is clearly regionally variable, which cautions against the use of commonly used proportionality factors between these variables in inversions. In all regions, we found a good correlation between the equivalent isotropic P- and S-wave velocity anomalies, with a ratio d ln Vs/d ln Vp close to 1. Density anomalies were not sufficiently well resolved with fundamental mode data alone, but do not influence the results for anisotropy.

Keywords: full model space search; mantle; radial anisotropy; surface waves

Journal Article.  8023 words.  Illustrated.

Subjects: Geophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.