Journal Article

The evolved stars of Leo II dSph galaxy from near-infrared UKIRT/WFCAM observations

M. Gullieuszik, E. V. Held, L. Rizzi, L. Girardi, P. Marigo and Y. Momany

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 388, issue 3, pages 1185-1197
Published in print August 2008 | ISSN: 0035-8711
Published online July 2008 | e-ISSN: 1365-2966 | DOI:
The evolved stars of Leo II dSph galaxy from near-infrared UKIRT/WFCAM observations

Show Summary Details


We present a study of the evolved stellar populations in the dwarf spheroidal galaxy Leo II, based on JHKs observations obtained with the near-infrared array WFCAM at the UKIRT telescope. Combining the new data with optical data, we derived photometric estimates of the distribution of global metallicity [M/H] of individual red giant stars from their VKs colours. Our results are consistent with the metallicities of red giant branch (RGB) stars obtained from Ca ii triplet spectroscopy, once the age effects are considered. The photometric metallicity distribution function has a peak at [M/H]=−1.74 (uncorrected) or [M/H]=−1.64 ± 0.06 (random) ±0.17 (systematic) after correction for the mean age of Leo II stars (9 Gyr). The distribution is similar to a Gaussian with σ[M/H]= 0.19 dex, corrected for instrumental errors. We used the new data to derive the properties of a nearly complete sample of asymptotic giant branch (AGB) stars in Leo II. Using a near-infrared two-colour diagram, we were able to obtain a clean separation from Milky Way foreground stars and discriminate between carbon- and oxygen-rich AGB stars, which allowed us to study their distribution in Ks-band luminosity and colour. We simulate the JHKs data with the trilegal population synthesis code together with the most updated thermally pulsing AGB models, and using the star formation histories derived from independent work based on deep Hubble Space Telescope photometry. After scaling the mass of Leo II models to the observed number of upper RGB stars, we find that present models predict too many O-rich thermally pulsing AGB (TP-AGB) stars of higher luminosity due to a likely underestimation of either their mass-loss rates at low metallicity, and/or their degree of obscuration by circumstellar dust. On the other hand, the TP-AGB models are able to reproduce the observed number and luminosities of carbon stars satisfactorily well, indicating that in this galaxy the least massive stars that became carbon stars should have masses as low as ∼1 M.

Keywords: stars: AGB and post-AGB; stars: carbon; galaxies: individual: Leo II; Local Group; galaxies: stellar content

Journal Article.  9914 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.