Journal Article

A structure and energy dissipation efficiency of relativistic reconfinement shocks

Krzysztof Nalewajko and Marek Sikora

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 392, issue 3, pages 1205-1210
Published in print January 2009 | ISSN: 0035-8711
Published online January 2009 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2008.14123.x
A structure and energy dissipation efficiency of relativistic reconfinement shocks

Show Summary Details

Preview

We present a semi-analytical hydrodynamical model for the structure of reconfinement shocks formed in astrophysical relativistic jets interacting with external medium. We take into account exact conservation laws, both across the shock front and in the zone of the shocked matter, and exact angular relations. Our results confirm a good accuracy of the approximate formulae derived by Komissarov & Falle. However, including the transverse pressure gradient in the shocked jet, we predict an absolute size of the shock to be about twice larger. We calculate the efficiency of the kinetic energy dissipation in the shock and show a strong dependence on both the bulk Lorentz factor and opening angle of the jet.

Keywords: shock waves; galaxies: jets

Journal Article.  3114 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.