Journal Article

Analytic solutions to the accretion of a rotating finite cloud towards a central object – I. Newtonian approach

S. Mendoza, E. Tejeda and E. Nagel

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 393, issue 2, pages 579-586
Published in print February 2009 | ISSN: 0035-8711
Published online February 2009 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2008.14210.x
Analytic solutions to the accretion of a rotating finite cloud towards a central object – I. Newtonian approach

Show Summary Details

Preview

We construct a steady analytic accretion flow model for a finite rotating gas cloud that accretes material to a central gravitational object. The pressure gradients of the flow are considered to be negligible, and so the flow is ballistic. We also assume a steady flow and consider the particles at the boundary of the spherical cloud to be rotating as a rigid body, with a fixed amount of inwards radial velocity. This represents a generalization to the traditional infinite gas cloud model described by Ulrich. We show that the streamlines and density profiles obtained deviate largely from the ones calculated by Ulrich. The extra freedom in the choice of the parameters on the model can naturally account for the study of protostars formed in dense clusters by triggered mechanisms, where a wide variety of external physical mechanisms determine the boundary conditions. Also, as expected, the model predicts the formation of an equatorial accretion disc about the central object with a radius different from the one calculated by Ulrich.

Keywords: accretion, accretion discs; hydrodynamics

Journal Article.  5258 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.