Journal Article

Modelling forbidden line emission profiles from colliding wind binaries

R. Ignace, R. Bessey and C. S. Price

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 395, issue 2, pages 962-972
Published in print May 2009 | ISSN: 0035-8711
Published online April 2009 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2009.14586.x
Modelling forbidden line emission profiles from colliding wind binaries

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

This paper presents calculations for forbidden emission-line profile shapes arising from colliding wind binaries. The main application is for systems involving a Wolf–Rayet (WR) star and an OB star companion. The WR wind is assumed to dominate the forbidden line emission. The colliding wind interaction is treated as an Archimedean spiral with an inner boundary. Under the assumptions of the model, the major findings are as follows. (i) The redistribution of the WR wind as a result of the wind collision is not flux conservative but typically produces an excess of line emission; however, this excess is modest at around the 10 per cent level. (ii) Deviations from a flat-toped profile shape for a spherical wind are greatest for viewing inclinations that are more nearly face-on to the orbital plane. At intermediate viewing inclinations, profiles display only mild deviations from a flat-toped shape. (iii) The profile shape can be used to constrain the colliding wind bow shock opening angle. (iv) Structure in the line profile tends to be suppressed in binaries of shorter periods. (v) Obtaining data for multiple forbidden lines is important since different lines probe different characteristic radial scales. Our models are discussed in relation to Infrared Space Observatory data for WR 147 and γ Vel (WR 11). The lines for WR 147 are probably not accurate enough to draw firm conclusions. For γ Vel, individual line morphologies are broadly reproducible but not simultaneously so for the claimed wind and orbital parameters. Overall, the effort demonstrates how lines that are sensitive to the large-scale wind can help to deduce binary system properties and provide new tests of numerical simulations.

Keywords: binaries: close; stars: early-type; stars: mass-loss; stars: winds, outflows; stars: Wolf–Rayet

Journal Article.  8190 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.