Journal Article

Large-scale circulations and energy transport in contact binaries

K. Stȩpień

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 397, issue 2, pages 857-867
Published in print August 2009 | ISSN: 0035-8711
Published online July 2009 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2009.14981.x
Large-scale circulations and energy transport in contact binaries

Show Summary Details

Preview

A hydrodynamic model for the energy transport between the components of a contact binary is presented. Energy is transported by a large-scale, steady circulation carrying high entropy matter from the primary to secondary component. The circulation is driven by the baroclinic structure of the common envelope, which is a direct consequence of the non-uniform heating at the inner critical Roche lobes due to unequal emergent energy fluxes of the components. The mass stream flowing around the secondary is bound to the equatorial region by the Coriolis force and its width is determined primarily by the flow velocity. Its bottom is separated from the underlying secondary's convection zone by a radiative transition layer acting as an insulator. For a typically observed degree of contact the heat capacity of the stream matter is much larger than radiative losses during its flow around the secondary. As a result, its effective temperature and entropy decrease very little before it returns to the primary. The existence of the stream changes insignificantly specific entropies of both convective envelopes and sizes of the components. Substantial oversize of the secondaries, required by the Roche geometry, cannot be explained in this way. The situation can, however, be explained by assuming that the primary is a main-sequence star whereas the secondary is in an advanced evolutionary stage with hydrogen depleted in its core. Such a configuration is reached past mass transfer with mass ratio reversal. Good agreement with observations is demonstrated by model calculations applied to actual W UMa-type binaries. In particular, a presence of the equatorial bulge moving with a relative velocity of 10–30 km s−! around both components of AW UMa is accounted for.

Keywords: binaries: eclipsing; stars: evolution

Journal Article.  9822 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.