Journal Article

Two-phase galaxy formation: the evolutionary properties of galaxies

M. Cook, E. Barausse, C. Evoli, A. Lapi and G. L. Granato

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 402, issue 4, pages 2113-2126
Published in print March 2010 | ISSN: 0035-8711
Published online March 2010 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2009.15875.x
Two-phase galaxy formation: the evolutionary properties of galaxies

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We use our model for the formation and evolution of galaxies within a two-phase galaxy formation scenario, showing that the high-redshift domain typically supports the growth of spheroidal systems, whereas at low redshifts the predominant baryonic growth mechanism is quiescent and may therefore support the growth of a disc structure. Under this framework, we investigate the evolving galaxy population by comparing key observations at both low and high redshifts, finding generally good agreement. By analysing the evolutionary properties of this model, we are able to recreate several features of the evolving galaxy population with redshift, naturally reproducing number counts of massive star-forming galaxies at high redshifts, along with the galaxy scaling relations, star formation rate density and evolution of the stellar mass function. Building upon these encouraging agreements, we make model predictions that can be tested by future observations. In particular, we present the expected evolution to z= 2 of the supermassive black hole mass function, and we show that the gas fraction in galaxies should decrease with increasing redshift in a mass, with more and more evolution going to higher and higher masses. Also, the characteristic transition mass from a disc to bulge-dominated system should decrease with increasing redshift.

Keywords: galaxies: evolution; galaxies: formation; cosmology: theory; dark matter

Journal Article.  11392 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.