Journal Article

Faint extended Lyα emission due to star formation at the centre of high column density QSO absorption systems

Luke A. Barnes and Martin G. Haehnelt

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 403, issue 2, pages 870-885
Published in print April 2010 | ISSN: 0035-8711
Published online March 2010 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2009.16172.x
Faint extended Lyα emission due to star formation at the centre of high column density QSO absorption systems

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We use detailed Lyα radiative transfer calculations to further test the claim of Rauch et al. that they have detected spatially extended faint Lyα emission from the elusive host population of damped Lyα absorption systems (DLAs) in their recent ultra-deep spectroscopic survey. We investigate the spatial and spectral distribution of Lyα emission due to star formation at the centre of DLAs, and its dependence on the spatial and velocity structure of the gas. Our model simultaneously reproduces the observed properties of DLAs and the faint Lyα emitters, including the velocity width and column density distribution of DLAs and the large spatial extent of the emission of the faint emitters. Our modelling confirms previous suggestions that DLAs are predominately hosted by dark matter (DM) haloes in the mass range 109.5–1012 M, and are thus of significantly lower mass than those inferred for L* Lyman Break Galaxies (LBGs). Our modelling suggests that DM haloes hosting DLAs retain up to 20 per cent of the cosmic baryon fraction in the form of neutral hydrogen, and that star formation at the centre of the haloes is responsible for the faint Lyα emission. The scattering of a significant fraction of the Lyα emission to the observed radii, which can be as large as 50 kpc or more, requires the amplitude of the bulk motions of the gas at the centre of the haloes to be moderate. The observed space density and size distribution of the emitters together with the incidence rate of DLAs suggests that the Lyα emission due to star formation has a duty cycle of ∼25 per cent.

Keywords: galaxies: formation; quasars: absorption lines

Journal Article.  11381 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.