Journal Article

The <i>z</i>= 0.0777 C <span class="smallCaps">iii</span> absorber towards PHL 1811 as a case study of a low-redshift weak metal line absorber

B. C. Lacki and J. C. Charlton

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 403, issue 3, pages 1556-1568
Published in print April 2010 | ISSN: 0035-8711
Published online April 2010 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2009.16216.x
The z= 0.0777 C iii absorber towards PHL 1811 as a case study of a low-redshift weak metal line absorber

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We consider the physical conditions and origin of the z= 0.0777 absorption system observed in C iii, C ii, Si iii, C iv, O vi and H i absorption along the line of sight towards the quasar PHL 1811. We analysed the Hubble Space Telescope/Space Telescope Imaging Spectrograph and Far Ultraviolet Spectroscopic Explorer spectra of this quasar and compared the results to cloudy photoionization and collisional ionization models in order to derive densities, temperatures and metallicities of the absorbing gas. The absorption can be explained by two C iii clouds, offset by 35 km s−1 in velocity, with metallicities of approximately one-tenth the solar value. One cloud has a density of the order of nH= 1.2+0.9−0.5× 10−3 cm−3 (thickness 0.4+0.3−0.2 kpc) and produces the observed C ii and Si iii absorption, while the other has a density of the order of nH= 1.2+0.9−0.5× 10−5 cm−3 (thickness 80+70−40 kpc) and gives rise to the observed weak C iv absorption. Cloud temperatures are ∼14 000+3000−2000 K and ∼34 000+2000−4000 K for photoionized models. Although collisionally ionized clouds with T∼ 70 000 K are possible, they are less likely because of the short cooling time-scales involved. Previous studies revealed no luminous galaxy at the absorber's redshift, so it is probably related to tidal debris, ejected material, a dwarf galaxy or other halo material in a galaxy group. Our models also indicate that one of the two clouds would produce detectable weak Mg ii absorption if spectral coverage of that transition existed. We predict what the system would look like at z∼ 1 when the ionizing background radiation was more intense. We find that at z∼ 1 the denser component resembles a C iv absorber. The second C iii cloud in this z= 0.0777 absorber may be analogous to a subset of the more diffuse O vi absorbers at higher redshift.

Keywords: intergalactic medium; quasars: absorption lines

Journal Article.  11875 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.