Journal Article

Two types of Lyman α emitters envisaged from hierarchical galaxy formation

Ikkoh Shimizu and Masayuki Umemura

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 406, issue 2, pages 913-921
Published in print August 2010 | ISSN: 0035-8711
Published online July 2010 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2010.16758.x
Two types of Lyman α emitters envisaged from hierarchical galaxy formation

Show Summary Details

Preview

In the last decade, numerous Lyman α (Lyα) emitters (LAEs) have been discovered with narrow-band filters at various redshifts. Recently, multiwavelength observations of LAEs have been performed and revealed that while many LAEs appear to be young and less massive, a noticeable fraction of LAEs possess much older populations of stars and larger stellar mass. How these two classes of LAEs are concordant with the hierarchical galaxy formation scenario has not been understood clearly so far. In this paper, we model LAEs by three-dimensional cosmological simulations of dark halo merger in a Λ cold dark matter (ΛCDM) universe. As a result, it is shown that the age of simulated LAEs can spread over a wide range from 2 × 106 to 9 × 108 yr. Furthermore, we find that there are two types of LAEs, in one of which the young half-mass age is comparable to the mean age of stellar component, and in the other of which the young half-mass age is appreciably shorter than the mean age. We define the former as Type 1 LAEs and the latter as Type 2 LAEs. A Type 1 LAE corresponds to early starburst in a young galaxy, whereas a Type 2 LAE does to delayed starburst in an evolved galaxy, as a consequence of delayed accretion of a subhalo on to a larger parent halo. Thus, the same halo can experience a Type 2 LAE phase as well as a Type 1 LAE phase in the merger history. Type 1 LAEs are expected to be younger than 1.5 × 108 yr, less dusty and less massive with stellar mass Mstar≲ 5 × 108 M, while Type 2 LAEs are older than 1.5 × 108 yr, even dustier and as massive as Mstar∼ 5 × 108–3 × 1010 M. The fraction of Type 2s in all LAEs is a function of redshift, which is less than 2 per cent at z≳ 4.5, ∼30 per cent at redshift z= 3.1 and ∼70 per cent at z= 2. Type 2 LAEs can be discriminated clearly from Type 1s in two-colour diagrams of z′−H versus JK. We find that the brightness distribution of Lyα in Type 2 LAEs is more extended than the main stellar component, in contrast to Type 1 LAEs. This is not only because delayed starbursts tend to occur in the outskirts of a parent galaxy, but also because Lyα photons are effectively absorbed by dust in an evolved galaxy. Hence, the extent of Lyα emission may be an additional measure to distinguish Type 2 LAEs from Type 1 LAEs. The sizes of Type 2 LAEs range from a few tens to a few hundreds kpc. At lower redshifts, the number of more extended, older Type 2 LAEs increases. Furthermore, it is anticipated that the amplitude of angular correlation function for Type 2 LAEs is significantly higher than that for Type 1 LAEs, but comparable to that for Lyman break galaxies (LBGs). This implies that LBGs with strong Lyα line may include Type 2 LAEs.

Keywords: galaxies: evolution; galaxies: formation

Journal Article.  4807 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.