Journal Article

H <span class="smallCaps">i</span> as a probe of the large-scale structure in the post-reionization universe

J. S. Bagla, Nishikanta Khandai and Kanan K. Datta

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 407, issue 1, pages 567-580
Published in print September 2010 | ISSN: 0035-8711
Published online August 2010 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2010.16933.x
H i as a probe of the large-scale structure in the post-reionization universe

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We model the distribution of neutral hydrogen (H i) in the post-reionization universe. This model uses gravity-only N-body simulations and an ansatz to assign H i to dark matter haloes that is consistent with observational constraints and theoretical models. We resolve the smallest haloes that are likely to host H i in the simulations; care is also taken to ensure that any errors due to the finite size of the simulation box are small. We then compute the smoothed one-point probability distribution function and the power spectrum of fluctuations in H i. This is compared with other predictions that have been made using different techniques. We highlight the significantly high bias for the H i distribution at small scales. This aspect has not been discussed before. We then discuss the prospects of the detection with the Murchison Widefield Array (MWA), Giant Meterwave Radio Telescope (GMRT) and the hypothetical MWA5000. The MWA5000 can detect visibility correlations at large angular scales at all redshifts in the post-reionization era. The GMRT can detect visibility correlations at lower redshifts; specifically there is a strong case for a survey at z≃ 1.3. We also discuss prospects for direct detection of rare peaks in the H i distribution using the GMRT. We show that direct detection should be possible with an integration time that is comparable to, or even less than, the time required for a statistical detection. Specifically, it is possible to make a statistical detection of the H i distribution by measuring the visibility correlation and direct detection of rare peaks in the H i distribution at z≃ 1.3 with the GMRT in less than 1000 h of observations.

Keywords: methods: numerical; galaxies: evolution; galaxies: ISM; large-scale structure of Universe; radio lines: galaxies

Journal Article.  10164 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.