Journal Article

Designing a space-based galaxy redshift survey to probe dark energy

Yun Wang, Will Percival, Andrea Cimatti, Pia Mukherjee, Luigi Guzzo, Carlton M. Baugh, Carmelita Carbone, Paolo Franzetti, Bianca Garilli, James E. Geach, Cedric G. Lacey, Elisabetta Majerotto, Alvaro Orsi, Piero Rosati, Lado Samushia and Giovanni Zamorani

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 409, issue 2, pages 737-749
Published in print December 2010 | ISSN: 0035-8711
Published online November 2010 | e-ISSN: 1365-2966 | DOI: https://dx.doi.org/10.1111/j.1365-2966.2010.17335.x
Designing a space-based galaxy redshift survey to probe dark energy

Show Summary Details

Preview

A space-based galaxy redshift survey would have enormous power in constraining dark energy and testing general relativity, provided that its parameters are suitably optimized. We study viable space-based galaxy redshift surveys, exploring the dependence of the Dark Energy Task Force (DETF) figure-of-merit (FoM) on redshift accuracy, redshift range, survey area, target selection and forecast method. Fitting formulae are provided for convenience. We also consider the dependence on the information used: the full galaxy power spectrum P(k), P(k) marginalized over its shape, or just the Baryon Acoustic Oscillations (BAO). We find that the inclusion of growth rate information (extracted using redshift space distortion and galaxy clustering amplitude measurements) leads to a factor of ∼3 improvement in the FoM, assuming general relativity is not modified. This inclusion partially compensates for the loss of information when only the BAO are used to give geometrical constraints, rather than using the full P(k) as a standard ruler. We find that a space-based galaxy redshift survey covering ∼20 000 deg2 over with σz/(1 +z) ≤ 0.001 exploits a redshift range that is only easily accessible from space, extends to sufficiently low redshifts to allow both a vast 3D map of the universe using a single tracer population, and overlaps with ground-based surveys to enable robust modelling of systematic effects. We argue that these parameters are close to their optimal values given current instrumental and practical constraints.

Keywords: cosmology: observations; distance scale; large-scale structure of Universe

Journal Article.  8534 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.