Journal Article

Polarization as an indicator of intrinsic alignment in radio weak lensing

Michael L. Brown and Richard A. Battye

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 410, issue 3, pages 2057-2074
Published in print January 2011 | ISSN: 0035-8711
Published online January 2011 | e-ISSN: 1365-2966 | DOI:
Polarization as an indicator of intrinsic alignment in radio weak lensing

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics


Show Summary Details


We propose a new technique for weak gravitational lensing in the radio band making use of polarization information. Since the orientation of a galaxy’s polarized emission is both unaffected by lensing and is related to the galaxy’s intrinsic orientation, it effectively provides information on the unlensed galaxy position angle. We derive a new weak-lensing estimator, which exploits this effect and makes full use of both the observed galaxy shapes and the estimates of the intrinsic position angles as provided by polarization. Our method has the potential both to reduce the effects of shot noise and to reduce to negligible levels, in a model-independent way, all effects of intrinsic galaxy alignments. We test our technique on simulated weak-lensing skies, including an intrinsic alignment contaminant consistent with recent observations, in three overlapping redshift bins. Adopting a standard weak-lensing analysis and ignoring intrinsic alignments results in biases of 5–10 per cent in the recovered power spectra and cosmological parameters. Applying our new estimator to one-tenth the number of galaxies used for the standard case, we recover both power spectra and the input cosmology with similar precision and with negligible residual bias. This remains true even in the presence of a substantial (astrophysical) scatter in the relationship between the observed orientation of the polarized emission and the intrinsic orientation. Assuming a reasonable polarization fraction for star-forming galaxies, and no cosmological conspiracy in the relationship between polarization direction and intrinsic morphology, our estimator should prove a valuable tool for weak-lensing analyses of forthcoming radio surveys, in particular, deep wide-field surveys with e-MERLIN, MeerKAT and ASKAP, and ultimately, definitive radio lensing surveys with the SKA.

Keywords: gravitational lensing: weak; methods: analytical; methods: statistical; cosmology: theory

Journal Article.  13056 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.