Journal Article

Dynamical friction of massive objects in galactic centres

A. Just, F. M. Khan, P. Berczik, A. Ernst and R. Spurzem

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 411, issue 1, pages 653-674
Published in print February 2011 | ISSN: 0035-8711
Published online January 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2010.17711.x
Dynamical friction of massive objects in galactic centres

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

Dynamical friction leads to an orbital decay of massive objects like young compact star clusters or massive black holes in central regions of galaxies. The dynamical friction force can be well approximated by Chandrasekhar’s standard formula, but recent investigations show that corrections to the Coulomb logarithm are necessary. With a large set of N-body simulations we show that the improved formula for the Coulomb logarithm fits the orbital decay very well for circular and eccentric orbits. The local scalelength of the background density distribution serves as the maximum impact parameter for a wide range of power-law indices of −1 … −5. For each type of code the numerical resolution must be compared to the effective minimum impact parameter in order to determine the Coulomb logarithm. We also quantify the correction factors by using self-consistent velocity distribution functions instead of the standard Maxwellian often used. These factors enter directly the decay time-scale and cover a range of 0.5 … 3 for typical orbits. The new Coulomb logarithm combined with self-consistent velocity distribution functions in the Chandrasekhar formula provides a significant improvement of orbital decay times with correction up to one order of magnitude compared to the standard case. We suggest the general use of the improved formula in parameter studies as well as in special applications.

Keywords: black hole physics; stars: kinematics and dynamics; Galaxy: centre; Galaxy: nucleus; galaxies: kinematics and dynamics; galaxies: nuclei

Journal Article.  13718 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.