Journal Article

An <i>XMM–Newton</i> spectral survey of 12 μm selected galaxies – I. X-ray data

Murray Brightman and Kirpal Nandra

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 413, issue 2, pages 1206-1235
Published in print May 2011 | ISSN: 0035-8711
Published online April 2011 | e-ISSN: 1365-2966 | DOI:
An XMM–Newton spectral survey of 12 μm selected galaxies – I. X-ray data

Show Summary Details


We present an X-ray spectral analysis of 126 galaxies of the 12 μm galaxy sample. By studying this sample at X-ray wavelengths, we aim to determine the intrinsic power, continuum shape and obscuration level in these sources. We improve upon previous works by the use of superior data in the form of higher signal-to-noise ratio spectra, finer spectral resolution and a broader bandpass from XMM–Newton. We pay particular attention to Compton thick active galactic nucleus (AGN) with the help of new spectral fitting models that we have produced, which are based on Monte Carlo simulations of X-ray radiative transfer, using both a spherical and torus geometry, and taking into account Compton scattering and iron fluorescence. We use this data to show that with a torus geometry, unobscured sightlines can achieve a maximum equivalent width of the Fe Kα line of ∼150 eV, originally shown by Ghisellini et al. In order for this to be exceeded, the line of sight must be obscured with NH > 1023 cm−2, as we show for one case, NGC 3690. We also calculate flux suppression factors from the simulated data, the main conclusion from which is that for NH≥ 1025 cm−2, the X-ray flux is suppressed by a factor of at least 10 in all X-ray bands and at all redshifts, revealing the biases present against these extremely heavily obscured systems inherent in all X-ray surveys. Furthermore, we confirm previous results from Murphy & Yaqoob that show that the reflection fraction determined from slab geometries is underestimated with respect to toroidal geometries. For the 12 μm selected galaxies, we investigate the distribution of X-ray power-law indices, finding that the mean (〈Γ〉= 1.90+0.05−0.07 and σΓ= 0.31+0.05−0.05) is consistent with previous works, and that the distribution of Γ for obscured and unobscured sources is consistent with the source populations being the same, in general support of unification schemes. We determine a Compton thick fraction for the X-ray AGN in our sample to be 18 ± 5 per cent which is higher than the hard X-ray (>10 keV) selected samples. Finally we find that the obscured fraction for our sample is a strong function of X-ray luminosity, peaking at a luminosity of ∼1042.43 erg s−1.

Keywords: line: formation; radiative transfer; galaxies: active; X-rays: galaxies

Journal Article.  15452 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.