Journal Article

The kinematic identification of a thick stellar disc in M31*†

M. L. M. Collins, S. C. Chapman, R. A. Ibata, M. J. Irwin, R. M. Rich, A. M. N. Ferguson, G. F. Lewis, N. Tanvir and A. Koch

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 413, issue 3, pages 1548-1568
Published in print May 2011 | ISSN: 0035-8711
Published online May 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.18238.x
The kinematic identification of a thick stellar disc in M31*†

Show Summary Details

Preview

We present the first characterization of a thick-disc component in the Andromeda galaxy (M31) using kinematic data from the DEIMOS instrument on Keck II. Using 21 fields in the south-west of the galaxy, we measure the lag of this component with respect to the thin disc, as well as the dispersion, metallicity and scalelength of the component. We find an average lag between the two components of 〈Δv〉= 46.0 ± 3.9 km s−1. The velocity dispersion of the thick disc is σthick= 50.8 ± 1.9 km s−1, greater than the value of dispersion we determine for the thin disc, σthin= 35.7 ± 1.0 km s−1. The thick disc is more metal poor than the thin disc, with [Fe/H]spec=−1.0 ± 0.1 compared with [Fe/H]spec=−0.7 ± 0.05 for the thin disc. We measure a radial scalelength of the thin and thick discs of hr= 7.3 ± 1.0 and 8.0 ± 1.2 kpc, respectively. From this, we infer scaleheights for both discs of 1.1 ± 0.2 and 2.8 ± 0.6 kpc, both of which are approximately two to three times larger than those observed in the Milky Way. We estimate a mass range for the thick-disc component of 2.4 × 1010 < M*, thick < 4.1 × 1010 M. This value provides a useful constraint on possible formation mechanisms, as any proposed method for forming a thick disc must be able to heat (or deposit) at least this amount of material.

Keywords: stars: kinematics and dynamics; galaxies: abundances; galaxies: evolution; Local Group; galaxies: spiral; galaxies: structure

Journal Article.  16829 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.