Journal Article

On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array

D. R. B. Yardley, W. A. Coles, G. B. Hobbs, J. P. W. Verbiest, R. N. Manchester, W. van Straten, F. A. Jenet, M. Bailes, N. D. R. Bhat, S. Burke-Spolaor, D. J. Champion, A. W. Hotan, S. Oslowski, J. E. Reynolds and J. M. Sarkissian

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 414, issue 2, pages 1777-1787
Published in print June 2011 | ISSN: 0035-8711
Published online June 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.18517.x
On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We search for the signature of an isotropic stochastic gravitational-wave background in pulsar timing observations using a frequency-domain correlation technique. These observations, which span roughly 12 yr, were obtained with the 64-m Parkes radio telescope augmented by public domain observations from the Arecibo Observatory. A wide range of signal processing issues unique to pulsar timing and not previously presented in the literature are discussed. These include the effects of quadratic removal, irregular sampling and variable errors which exacerbate the spectral leakage inherent in estimating the steep red spectrum of the gravitational-wave background. These observations are found to be consistent with the null hypothesis that no gravitational-wave background is present, with 76 per cent confidence. We show that the detection statistic is dominated by the contributions of only a few pulsars because of the inhomogeneity of this data set. The issues of detecting the signature of a gravitational-wave background with future observations are discussed.

Keywords: gravitational waves; methods: data analysis; stars: pulsars: general

Journal Article.  9080 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.