Journal Article

An automated archival Very Large Array transients survey

M. E. Bell, R. P. Fender, J. Swinbank, J. C. A. Miller-Jones, C. J. Law, B. Scheers, H. Spreeuw, M. W. Wise, B. W. Stappers, R. A. M. J. Wijers, J. W. T. Hessels and J. Masters

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 415, issue 1, pages 2-10
Published in print July 2011 | ISSN: 0035-8711
Published online July 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.18631.x
An automated archival Very Large Array transients survey

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings – i.e. the calibrator fields. These fields typically contain a relatively bright point source and are used to calibrate ‘target’ observations: they are therefore rarely imaged themselves. The observations used span a time range ∼1984–2008 and consist of eight different pointings, three different frequencies (8.4, 4.8 and 1.4 GHz) and have a total observing time of 435 h. We have searched for transient and variable radio sources within these observations using components from the prototype LOFAR transient detection system. In this paper we present the methodology for reducing large volumes of Very Large Array data; and we also present a brief overview of the prototype LOFAR transient detection algorithms. No radio transients were detected in this survey, therefore we place an upper limit on the snapshot rate of GHz frequency transients >8.0 mJy to ρ≤ 0.032 deg−2 that have typical time-scales 4.3 to 45.3 d. We compare and contrast our upper limit with the snapshot rates – derived from either detections or non-detections of transient and variable radio sources – reported in the literature. When compared with the current Log N−Log S distribution formed from previous surveys, we show that our upper limit is consistent with the observed population. Current and future radio transient surveys will hopefully further constrain these statistics, and potentially discover dominant transient source populations. In this paper we also briefly explore the current transient commissioning observations with LOFAR, and the impact they will make on the field.

Keywords: astronomical data bases: miscellaneous; radio continuum: general

Journal Article.  6934 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.