Journal Article

Directional characteristics of thermal–infrared beaming from atmosphereless planetary surfaces – a new thermophysical model

B. Rozitis and S. F. Green

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 415, issue 3, pages 2042-2062
Published in print August 2011 | ISSN: 0035-8711
Published online August 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.18718.x
Directional characteristics of thermal–infrared beaming from atmosphereless planetary surfaces – a new thermophysical model

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We present a new rough-surface thermophysical model (Advanced Thermophysical Model or ATPM) that describes the observed directional thermal emission from any atmosphereless planetary surface. It explicitly incorporates partial shadowing, scattering of sunlight, self-heating and thermal–infrared beaming (re-radiation of absorbed sunlight back towards the Sun as a result of surface roughness). The model is verified by accurately reproducing ground-based directional thermal emission measurements of the lunar surface using surface properties that are consistent with the findings of the Apollo missions and roughness characterized by an rms slope of ∼32°. By considering the wide range of potential asteroid surface properties, the model implies a beaming effect that cannot be described by a simple parameter or function. It is highly dependent on the illumination and viewing angles as well as surface thermal properties and is predominantly caused by macroscopic rather than microscopic roughness. Roughness alters the effective Bond albedo and thermal inertia of the surface as well as moving the mean emission away from the surface normal. For accurate determination of surface properties from thermal–infrared observations of unresolved bodies or resolved surface elements, roughness must be explicitly modelled, preferably aided with thermal measurements at different emission angles and wavelengths.

Keywords: radiation mechanisms: thermal; methods: numerical; minor planets, asteroids; general; Moon; infrared: planetary systems

Journal Article.  10457 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.