Journal Article

Prospects of observing continuous gravitational waves from known pulsars

Matthew Pitkin

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 415, issue 2, pages 1849-1863
Published in print August 2011 | ISSN: 0035-8711
Published online July 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.18818.x
Prospects of observing continuous gravitational waves from known pulsars

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

Several past searches for gravitational waves from a selection of known pulsars have been performed with data from the science runs of the Laser Interferometer Gravitational-Wave Observatory (LIGO) gravitational wave detectors. So far these have led to no detection, but upper limits on the gravitational wave amplitudes have been set. Here we study our intrinsic ability to detect, and estimate the gravitational wave amplitude for non-accreting pulsars. Using spin-down limits on emission as a guide we examine amplitudes that would be required to observe known pulsars with future detectors (Advanced LIGO, Advanced Virgo and the Einstein Telescope), assuming that they are triaxial stars emitting at precisely twice the known rotation frequency. Maximum allowed amplitudes depend on the stars’ equation of state (e.g. a normal neutron star, a quark star, a hybrid star) and the theoretical mass quadrupoles that they can sustain. We study what range of quadrupoles, and therefore equation of state (EoS), would be consistent with being able to detect these sources. For globular cluster pulsars, with spin-downs masked by accelerations within the cluster, we examine what spin-down values gravitational wave observations would be able to set. For all pulsars we also alternatively examine what internal magnetic fields they would need to sustain observable ellipticities.

Keywords: gravitational waves; stars: neutron; pulsars: general

Journal Article.  11393 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.