Journal Article

Simulations of the formation and evolution of isolated dwarf galaxies – II. Angular momentum as a second parameter

J. Schroyen, S. De Rijcke, S. Valcke, A. Cloet-Osselaer and H. Dejonghe

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 416, issue 1, pages 601-617
Published in print September 2011 | ISSN: 0035-8711
Published online August 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.19083.x
Simulations of the formation and evolution of isolated dwarf galaxies – II. Angular momentum as a second parameter

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

We show results based on a large suite of N-body/smoothed particle hydrodynamics simulations of isolated, flat dwarf galaxies, both rotating and non-rotating. The main goal is to investigate possible mechanisms to explain the observed dichotomy in radial stellar metallicity profiles of dwarf galaxies: dwarf irregulars (dIrrs) and flat, rotating dwarf ellipticals (dEs) generally possess flat metallicity profiles, while rounder and non-rotating dEs show strong negative metallicity gradients.

These simulations show that flattening by rotation is key to reproducing the observed characteristics of flat dwarf galaxies, proving particularly efficient in erasing metallicity gradients. We propose a ‘centrifugal barrier mechanism’ as an alternative to the previously suggested ‘fountain mechanism’ for explaining the flat metallicity profiles of dIrrs and flat, rotating dEs. While only flattening the dark matter halo has little influence, the addition of angular momentum slows down the infall of gas, so that star formation (SF) and the ensuing feedback are less centrally concentrated, occurring galaxy-wide. Additionally, this leads to more continuous star formation histories by preventing large-scale oscillations in the star formation rate (‘breathing’), and creates low-density holes in the interstellar medium, in agreement with observations of dIrrs.

Our general conclusion is that rotation has a significant influence on the evolution and appearance of dwarf galaxies, and we suggest angular momentum as a second parameter (after galaxy mass as the dominant parameter) in dwarf galaxy evolution. Angular momentum differentiates between SF modes, making our fast rotating models qualitatively resemble dIrrs, which does not seem possible without rotation.

Keywords: methods: numerical; galaxies: dwarf; galaxies: evolution; galaxies: formation

Journal Article.  11020 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.