Journal Article

Using dwarf satellite proper motions to determine their origin

G. W. Angus, Antonaldo Diaferio and Pavel Kroupa

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 416, issue 2, pages 1401-1409
Published in print September 2011 | ISSN: 0035-8711
Published online September 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.19138.x
Using dwarf satellite proper motions to determine their origin

Show Summary Details

Preview

The highly organized distribution of satellite galaxies surrounding the Milky Way is a serious challenge to the concordance cosmological model. Perhaps the only remaining solution, in this framework, is that the dwarf satellite galaxies fall into the Milky Way’s potential along one or two filaments, which may or may not plausibly reproduce the observed distribution. Here we test this scenario by making use of the proper motions of the Fornax, Sculptor, Ursa Minor and Carina dwarf spheroidals, and trace their orbits back through several variations of the Milky Way’s potential and account for dynamical friction. The key parameters are the proper motions and total masses of the dwarf galaxies. Using a simple model, we find no tenable set of parameters that can allow Fornax to be consistent with filamentary infall, mainly because the 1σ error on its proper motion is relatively small. The other three must walk a tightrope between requiring a small pericentre (less than 20 kpc) to lose enough orbital energy to dynamical friction and avoiding being tidally disrupted. We then employed a more realistic model with host halo mass accretion and found that the four dwarf galaxies must have fallen in at least 5 Gyr ago. This time-interval is longer than organized distribution is expected to last before being erased by the randomization of the satellite orbits.

Keywords: gravitation; galaxies: dwarf; galaxies: evolution; Local Group; dark matter

Journal Article.  6431 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.