Journal Article

Instability-driven interfacial dynamo in protoneutron stars

A. Mastrano and A. Melatos

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 417, issue 1, pages 508-516
Published in print October 2011 | ISSN: 0035-8711
Published online October 2011 | e-ISSN: 1365-2966 | DOI:
Instability-driven interfacial dynamo in protoneutron stars

Show Summary Details


The existence of a tachocline in the Sun has been proven by helioseismology. It is unknown whether a similar shear layer, widely regarded as the seat of magnetic dynamo action, also exists in a protoneutron star. Sudden jumps in magnetic diffusivity η and turbulent vorticity α, for example at the interface between the neutron-finger and convective zones, are known to be capable of enhancing mean-field dynamo effects in a protoneutron star. Here, we apply the well-known, plane–parallel, MacGregor–Charbonneau analysis of the solar interfacial dynamo to the protoneutron star problem and analytically calculate the growth rate under a range of conditions. It is shown that, like the solar dynamo, it is impossible to achieve self-sustained growth if the discontinuities in α, η and shear are coincident and the magnetic diffusivity is isotropic. In contrast, when the jumps in η and α are situated away from the shear layer, self-sustained growth is possible for P≲ 49.8 ms (if the velocity shear is located at 0.3R) or P≲ 83.6 ms (if the velocity shear is located at 0.6R). This translates into stronger shear and/or α-effect than in the Sun. Self-sustained growth is also possible if the magnetic diffusivity is anisotropic, through the Ω×J effect, even when the α, η and shear discontinuities are coincident.

Keywords: hydrodynamics; stars: interiors; stars: magnetic field; stars: neutron

Journal Article.  7878 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.