Journal Article

Low-frequency oscillations in black holes: a spectral-timing approach to the case of GX 339-4

S. Motta, T. Muñoz-Darias, P. Casella, T. Belloni and J. Homan

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 418, issue 4, pages 2292-2307
Published in print December 2011 | ISSN: 0035-8711
Published online December 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.19566.x
Low-frequency oscillations in black holes: a spectral-timing approach to the case of GX 339-4

Show Summary Details

Preview

We analysed Rossi X-ray Timing Explorer (RXTE)/PCA and HEXTE data of the transient black hole binary GX 339-4, collected over a time-span of 8 years. We studied the properties and the behaviour of low-frequency quasi-periodic oscillations (QPOs) as a function of the integrated broad-band variability and the spectral parameters during four outbursts (2002, 2004, 2007 and 2010). Most of the QPOs could be classified following the ABC classification which has been proposed before. Our results show that the ABC classification can be extended to include spectral dependencies and that the three QPO types have indeed intrinsically different properties. In terms of the relation between QPO frequency and power-law flux, types A and C QPOs may follow the same relation, whereas the type B QPOs trace out a very different relation. Type B QPO frequencies clearly correlate with the power-law flux and are connected to local increases of the count rate. The frequencies of all QPOs observed in the rising phase of the 2002, 2007 and 2010 outbursts correlate with the disc flux. Our results can be interpreted within the framework of the recently proposed QPO models involving Lense–Thirring precession. We suggest that types C and A QPOs might be connected and could be interpreted as being the result of the same phenomenon observed at different stages of the outburst evolution, while a different physical process produces type B QPOs.

Keywords: accretion, accretion discs; binaries: close; stars: individual: GX 339-4; X-rays: stars

Journal Article.  11001 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.