Journal Article

Chemical composition of a sample of candidate post-asymptotic giant branch stars

S. Sumangala Rao, Sunetra Giridhar and David L. Lambert

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 419, issue 2, pages 1254-1270
Published in print January 2012 | ISSN: 0035-8711
Published online December 2011 | e-ISSN: 1365-2966 | DOI:
Chemical composition of a sample of candidate post-asymptotic giant branch stars

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics


Show Summary Details


We have derived elemental abundances for a sample of nine IRAS sources with colours similar to those of post-asymptotic giant branch (post-AGB) stars. For IRAS 01259+6823, IRAS 05208−2035, IRAS 04535+3747 and IRAS 08187−1905, this is the first detailed abundance analysis based upon high-resolution spectra. Mild indication of s-processing for IRAS 01259+6823, IRAS 05208−2035 and IRAS 08187−1905 has been found and a more comprehensive study of s-process-enhanced objects IRAS 17279−1119 and IRAS 22223+4327 has been carried out.

We have also made a contemporary abundance analysis of the high Galactic latitude supergiants BD+39°4926 and HD 107369. The former is heavily depleted in refractories and estimated [Zn/H] of −0.7 dex most likely gives initial metallicity of the star. For HD 107369 the abundances of α and Fe-peak elements are similar to those of halo objects and moderate deficiency of s-process elements is seen. IRAS 07140−2321, despite being a short-period binary with a circumstellar shell, does not exhibit selective depletion of refractory elements.

We have compiled the stellar parameters and abundances for post-AGB stars with s-process enhancement, those showing significant depletion of condensable elements and those showing neither. The compilation shows that the s-process-enhanced group contains a very small number of binaries, and observed [α/Fe] are generally similar to thick-disc values. It is likely that they represent AGB evolution of single stars.

The compilation of the depleted group contains a larger fraction of binaries and generally supports the hypothesis of dusty discs surrounding binary post-AGB stars inferred via the shape of their spectral energy distribution and mid-infrared interferometry. IRAS 07140−2321 and BD+39°4926 are difficult to explain with this scenario and indicate the existence of an additional parameter/condition needed to explain the depletion phenomenon. However, the conditions for discernible depletion, minimum temperature of 5000 K and initial metallicity larger than −1.0 dex found from our earlier work still serve as useful criteria.

Keywords: stars: abundances; stars: AGB and post-AGB; stars: atmospheres; circumstellar matter; stars: evolution

Journal Article.  11403 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.