Journal Article

The evolution of CMB spectral distortions in the early Universe

J. Chluba and R. A. Sunyaev

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 419, issue 2, pages 1294-1314
Published in print January 2012 | ISSN: 0035-8711
Published online December 2011 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.19786.x
The evolution of CMB spectral distortions in the early Universe

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

The energy spectrum of the cosmic microwave background (CMB) allows us to constrain episodes of energy release in the early Universe. In this paper, we revisit and refine computations of the cosmological thermalization problem. For this purpose a new code, called CosmoTherm, was developed that allows us to solve the coupled photon–electron Boltzmann equation in the expanding, isotropic Universe for a small spectral distortion in the CMB. We explicitly compute the shape of the spectral distortions caused by energy release due to (i) annihilating dark matter; (ii) decaying relict particles; (iii) dissipation of acoustic waves; and (iv) quasi-instantaneous heating. We also demonstrate that (v) the continuous interaction of CMB photons with adiabatically cooling non-relativistic electrons and baryons causes a negativeμ-type CMB spectral distortion of ΔIν/Iν∼ 10−8 in the GHz spectral band. We solve the thermalization problem including improved approximations for the double Compton and Bremsstrahlung emissivities, as well as the latest treatment of the cosmological recombination process. At redshifts z≲ 103, the matter starts to cool significantly below the temperature of the CMB so that at very low frequencies, free–free absorption alters the shape of primordial distortions significantly. In addition, the cooling electrons down-scatter CMB photons, introducing a small late negative y-type distortion at high frequencies. We also discuss our results in the light of the recently proposed CMB experiment PIXIE, for which CosmoTherm should allow detailed forecasting. Our current computations show that for energy injection because of points (ii) and (iv), PIXIE should allow us to improve existing limits, while the CMB distortions caused by the other processes seem to remain unobservable with the currently proposed sensitivities and spectral bands of PIXIE.

Keywords: cosmology: observations; cosmology: theory

Journal Article.  16472 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.