Journal Article

On point spread function modelling: towards optimal interpolation

Joel Bergé, Sedona Price, Adam Amara and Jason Rhodes

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 419, issue 3, pages 2356-2368
Published in print January 2012 | ISSN: 0035-8711
Published online January 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.19888.x
On point spread function modelling: towards optimal interpolation

Show Summary Details

Preview

Point spread function (PSF) modelling is a central part of any astronomy data analysis relying on measuring the shapes of objects. It is especially crucial for weak gravitational lensing, in order to beat down systematics and allow one to reach the full potential of weak lensing in measuring dark energy. A PSF modelling pipeline is made of two main steps: the first one is to assess its shape on stars, and the second is to interpolate it at any desired position (usually galaxies). We focus on the second part, and compare different interpolation schemes, including polynomial interpolation, radial basis functions, Delaunay triangulation and Kriging. For that purpose, we develop simulations of PSF fields, in which stars are built from a set of basis functions defined from a principal components analysis of a real ground-based image. We find that Kriging gives the most reliable interpolation, significantly better than the traditionally used polynomial interpolation. We also note that although a Kriging interpolation on individual images is enough to control systematics at the level necessary for current weak lensing surveys, more elaborate techniques will have to be developed to reach future ambitious surveys’ requirements.

Keywords: gravitational lensing: weak; methods: data analysis; methods: statistical

Journal Article.  7077 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.