Journal Article

Early massive clusters and the bouncing coupled dark energy

Marco Baldi

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 420, issue 1, pages 430-440
Published in print February 2012 | ISSN: 0035-8711
Published online January 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.20048.x
Early massive clusters and the bouncing coupled dark energy

More Like This

Show all results sharing this subject:

  • Astronomy and Astrophysics

GO

Show Summary Details

Preview

The abundance of the most massive objects in the Universe at different epochs is a very sensitive probe of the cosmic background evolution and of the growth history of density perturbations, and could provide a powerful tool to distinguish between a cosmological constant and a dynamical dark energy field. In particular, the recent detection of very massive clusters of galaxies at high redshifts has attracted significant interest as a possible indication of a failure of the standard Λ cold dark matter model. Several attempts have been made in order to explain such detections in the context of non-Gaussian scenarios or interacting dark energy models, showing that both these alternative cosmologies predict an enhanced number density of massive clusters at high redshifts, possibly alleviating the tension. However, all the models proposed so far also overpredict the abundance of massive clusters at the present epoch, and are therefore in contrast with observational bounds on the low-redshift halo mass function. In this paper we present for the first time a new class of interacting dark energy models that simultaneously account for an enhanced number density of massive clusters at high redshifts and for both the standard cluster abundance at the present time and the standard power spectrum normalization at cosmic microwave background (CMB). The key feature of this new class of models is the ‘bounce’ of the dark energy scalar field on the cosmological constant barrier at relatively recent epochs. We present the background and linear perturbations evolution of the model, showing that the standard amplitude of density perturbations is recovered both at CMB and at the present time, and we demonstrate by means of large N-body simulations that our scenario predicts an enhanced number of massive clusters at high redshifts without affecting the present halo abundance. Such behaviour could not arise in non-Gaussian models, and is therefore a characteristic feature of the bouncing coupled dark energy scenario.

Keywords: galaxies: formation; cosmology: theory; dark energy; dark matter; methods: N-body simulations

Journal Article.  8865 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.