Journal Article

Photometric determination of the mass accretion rates of pre-mainsequence stars – III. Results in the Large Magellanic Cloud

L. Spezzi, G. De Marchi, N. Panagia, A. Sicilia-Aguilar and B. Ercolano

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 421, issue 1, pages 78-97
Published in print March 2012 | ISSN: 0035-8711
Published online March 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.20130.x
Photometric determination of the mass accretion rates of pre-mainsequence stars – III. Results in the Large Magellanic Cloud

Show Summary Details

Preview

We present a multiwavelength study of three star-forming regions, spanning the age range 1–14 Myr, located between the 30 Doradus complex and supernova SN 1987A in the Large Magellanic Cloud (LMC). We reliably identify about 1000 pre-main-sequence (PMS) star candidates actively undergoing mass accretion and estimate their stellar properties and mass accretion rate (). Our measurements represent the largest data set of low-metallicity stars presented so far. As such, they offer a unique opportunity to study on a statistical basis the mass accretion process in the LMC and, more in general, the evolution of the mass accretion process around low-metallicity stars. We find that the typical of PMS stars in the LMC is higher than for galactic PMS stars of the same mass, independently of their age. Taking into account the caveats of isochronal age and estimates, the difference in between the LMC and our Galaxy appears to be about an order of magnitude. We review the main mechanisms of disc dispersal and find indications that typically higher are to be expected in low-metallicity environments. However, many issues of this scenario need to be clarified by future observations and modelling. We also find that, in the mass range 1–2 M, of PMS stars in the LMC increases with stellar mass as , with b≈ 1, i.e. slower than the second power law found for galactic PMS stars in the same mass regime.

Keywords: stars: formation; stars: pre-main-sequence; Magellanic Clouds

Journal Article.  15739 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.