Journal Article

Natures of a clump-origin bulge: a pseudo-bulge like but old metal-rich bulge

Shigeki Inoue and Takayuki R. Saitoh

in Monthly Notices of the Royal Astronomical Society

Published on behalf of The Royal Astronomical Society

Volume 422, issue 3, pages 1902-1913
Published in print May 2012 | ISSN: 0035-8711
Published online May 2012 | e-ISSN: 1365-2966 | DOI: http://dx.doi.org/10.1111/j.1365-2966.2011.20338.x
Natures of a clump-origin bulge: a pseudo-bulge like but old metal-rich bulge

Show Summary Details

Preview

Bulges in spiral galaxies have been supposed to be classified into classical bulges or pseudo-bulges. Classical bulges are thought to form by galactic merger with bursty star formation, whereas pseudo-bulges are suggested to form by secular evolution due to spiral arms and a barred structure funnelling gas into the galactic centre. Noguchi suggested another bulge formation scenario, ‘clump-origin bulge’. He demonstrated using a numerical simulation that a galactic disc suffers dynamical instability to form clumpy structures in the early stage of disc formation since the premature disc is expected to be highly gas rich, then the clumps are sucked into the galactic centre by dynamical friction and merge into a single bulge at the centre. This bulge formation scenario, which is expected to happen only at the high redshift, is different from the galactic merger and the secular evolution. Therefore, clump-origin bulges may have their own unique properties. We perform a high-resolution N-body/smoothed particle hydrodynamics simulation for the formation of the clump-origin bulge in an isolated galaxy model and study dynamical and chemical properties of the clump-origin bulge. We find that the clump-origin bulge resembles pseudo-bulges in dynamical properties, a nearly exponential surface density profile, a barred boxy shape and a significant rotation. We also find that this bulge consists of old and metal-rich stars, displaying resemblance to classical bulges. These natures, old metal-rich population but pseudo-bulge-like structures, mean that the clump-origin bulge cannot be simply classified into classical bulges or pseudo-bulges. From these results, we discuss similarities of the clump-origin bulge to the Milky Way bulge. Combined with a result of Elmegreen et al., this pseudo-bulge-like clump-origin bulge could be inferred to form in clump clusters with a relatively low surface density.

Keywords: methods: numerical; Galaxy: bulge; Galaxy: disc; Galaxy: formation; galaxies: bulges; galaxies: formation

Journal Article.  9249 words.  Illustrated.

Subjects: Astronomy and Astrophysics

Full text: subscription required

How to subscribe Recommend to my Librarian

Users without a subscription are not able to see the full content. Please, subscribe or login to access all content.